On wings of mathematics (Sienna Morris/Rex Features)
Read more: “Special issue: What is reality?“
WHEN Albert Einstein finally completed his general theory of relativity in 1916, he looked down at the equations and discovered an unexpected message: the universe is expanding.
Einstein didn’t believe the physical universe could shrink or grow, so he ignored what the equations were telling him. Thirteen years later, Edwin Hubble found clear evidence of the universe’s expansion. Einstein had missed the opportunity to make the most dramatic scientific prediction in history.
How did Einstein’s equations “know” that the universe was expanding when he did not? If mathematics is nothing more than a language we use to describe the world, an invention of the human brain, how can it possibly churn out anything beyond what we put in? “It is difficult to avoid the impression that a miracle confronts us here,” wrote physicist Eugene Wigner in his classic 1960 paper “The unreasonable effectiveness of mathematics in the natural sciences” (Communications on Pure and Applied Mathematics, vol 13, p 1).
The prescience of mathematics seems no less miraculous today. At the Large Hadron Collider at CERN, near Geneva, Switzerland, physicists recently observed the fingerprints of a particle that was arguably discovered 48 years ago lurking in the equations of particle physics.
How is it possible that mathematics “knows” about Higgs particles or any other feature of physical reality? “Maybe it’s because math is reality,” says physicist Brian Greene of Columbia University, New York. Perhaps if we dig deep enough, we would find that physical objects like tables and chairs are ultimately not…